Sunday, 23 July 2017

ชี้แจง เคลื่อนไหว เฉลี่ย ซื้อ สัญญาณ


MetaTrader 4 - ตัวบ่งชี้ Moving Averages, MA - ตัวบ่งชี้สำหรับ MetaTrader 4 ตัวบ่งชี้ทางเทคนิคของ Moving Average บ่งชี้ค่าเฉลี่ยของราคาตราสารในช่วงเวลาหนึ่ง เมื่อคำนวณค่าเฉลี่ยเคลื่อนที่ค่าเฉลี่ยหนึ่งค่าจากราคาตราสารในช่วงเวลานี้ เมื่อราคาเปลี่ยนแปลงไปค่าเฉลี่ยเคลื่อนที่จะเพิ่มขึ้นหรือลดลง มีสี่ประเภทของค่าเฉลี่ยเคลื่อนที่คือ Simple (เรียกอีกอย่างว่า Arithmetic), Exponential, Smoothed และ Linear Weighted ค่าเฉลี่ยเคลื่อนที่สามารถคำนวณได้จากชุดข้อมูลลำดับใด ๆ รวมถึงราคาเปิดและปิดราคาสูงสุดและต่ำสุดปริมาณการซื้อขายหรือตัวชี้วัดอื่น ๆ มักเป็นกรณีที่ใช้ค่าเฉลี่ยเคลื่อนที่สองเท่า สิ่งเดียวที่ค่าเฉลี่ยเคลื่อนที่ของแต่ละประเภทแตกต่างกันมากคือเมื่อค่าสัมประสิทธิ์น้ำหนักที่กำหนดให้กับข้อมูลล่าสุดต่างกัน ในกรณีที่เราพูดถึงค่าเฉลี่ยเคลื่อนที่ที่เรียบง่ายราคาทั้งหมดของช่วงเวลาที่เป็นปัญหามีมูลค่าเท่ากัน เส้นค่าเฉลี่ยเลขยกกำลังเชิงเส้นและแบบ Linear มีมูลค่าเพิ่มมากขึ้นในราคาล่าสุด วิธีที่นิยมใช้ในการตีราคาค่าเฉลี่ยของราคาคือการเปรียบเทียบการเปลี่ยนแปลงของราคากับการดำเนินการด้านราคา เมื่อราคาของตราสารเพิ่มขึ้นเหนือค่าเฉลี่ยเคลื่อนที่สัญญาณซื้อจะปรากฏขึ้นหากราคาปรับตัวลดลงต่ำกว่าค่าเฉลี่ยเคลื่อนที่เรามีสัญญาณการขายอะไรบ้าง ระบบการซื้อขายนี้ซึ่งอิงตามค่าเฉลี่ยเคลื่อนที่ไม่ได้ออกแบบมาเพื่อให้เข้าสู่ตลาดได้อย่างถูกต้องในจุดต่ำสุดและทางออกด้านขวาบนยอด จะช่วยให้สามารถปฏิบัติตามแนวโน้มดังต่อไปนี้: ซื้อเร็ว ๆ นี้หลังจากที่ราคาถึงจุดต่ำสุดแล้วและจะขายได้เร็ว ๆ นี้หลังจากที่ราคาถึงจุดสูงสุดแล้ว Simple Moving Average (Simple Moving Average - Simple Moving Average - Simple Moving Average - Simple Moving Average - Simple Moving Average) หมายถึงค่าเฉลี่ยเคลื่อนที่เฉลี่ยคำนวณโดยสรุปราคาปิดตราสารเป็นระยะเวลาเดียว (เช่น 12 ชั่วโมง) ค่านี้หารด้วยจำนวนงวดดังกล่าว SMA SUM (CLOSE, N) N โดยที่: N เป็นจำนวนงวดการคำนวณ ค่าเฉลี่ยเคลื่อนที่แบบ Exponential (EMA) ค่าเฉลี่ยเคลื่อนที่โดยการสุ่มชี้แจงจะคำนวณโดยการเพิ่มค่าเฉลี่ยเคลื่อนที่ของส่วนแบ่งของราคาปิดปัจจุบันเป็นค่าก่อนหน้า ด้วยค่าเฉลี่ยเคลื่อนที่ที่ราบเรียบตามลำดับส่วนราคาล่าสุดมีมูลค่ามากขึ้น ค่าเฉลี่ยเลขคณิตของ P-percent จะมีลักษณะดังนี้: ที่ไหน: ปิด: (i) ราคาของการปิดงวดปัจจุบัน EMA (i-1) ค่าเฉลี่ยเลขทศนิยมของการปิดงวดก่อนหน้า P เปอร์เซ็นต์ของการใช้ราคา Smoothed Moving Average (SMMA) ค่าแรกของค่าเฉลี่ยเคลื่อนที่แบบเรียบนี้คำนวณเป็นค่าเฉลี่ยเคลื่อนที่แบบเรียบ (SMA): SUM1 SUM (CLOSE, N) ค่าเฉลี่ยเคลื่อนที่ที่สองและค่าที่ต่อเนื่องจะคำนวณตามสูตรนี้: ที่ไหน: SUM1 คือ ยอดรวมของราคาปิดสำหรับระยะเวลา N SMMA1 เป็นค่าเฉลี่ยเคลื่อนที่ที่ราบเรียบของแถบแรก SMMA (i) เป็นค่าเฉลี่ยเคลื่อนที่ที่ราบเรียบของแถบปัจจุบัน (ยกเว้นค่าแรก) CLOSE (i) คือราคาปิดปัจจุบัน N คือ ราบเรียบ ค่าเฉลี่ยถ่วงน้ำหนักเชิงเส้น (LWMA) ในกรณีของค่าเฉลี่ยเคลื่อนที่ถ่วงน้ำหนักข้อมูลล่าสุดมีค่ามากกว่าข้อมูลเริ่มต้น ค่าเฉลี่ยถ่วงน้ำหนักที่คำนวณได้จากการคูณราคาปิดของแต่ละกลุ่มในชุดพิจารณาโดยใช้ค่าสัมประสิทธิ์น้ำหนัก LWMA SUM (ปิด (i) i, N) SUM (i, N) ที่ไหน: SUM (i, N) คือผลรวมของค่าสัมประสิทธิ์น้ำหนัก ค่าเฉลี่ยเคลื่อนที่สามารถใช้กับตัวบ่งชี้ได้ นั่นคือที่การตีความตัวบ่งชี้ค่าเฉลี่ยเคลื่อนที่จะคล้ายกับการตีความค่าเฉลี่ยถ่วงน้ำหนักของราคา: ถ้าตัวบ่งชี้สูงขึ้นเหนือค่าเฉลี่ยเคลื่อนที่ของตัวบ่งชี้นั่นหมายความว่าการเคลื่อนไหวของตัวบ่งชี้ที่เพิ่มขึ้นมีแนวโน้มที่จะดำเนินต่อไป: ถ้าตัวบ่งชี้ต่ำกว่าค่าเฉลี่ยเคลื่อนที่ หมายความว่ามีแนวโน้มว่าจะลดลงต่อไป นี่คือค่าเฉลี่ยเคลื่อนที่โดยเฉลี่ย (SMA) ค่าเฉลี่ยเคลื่อนที่เฉลี่ย (SMMA) ค่าเฉลี่ยเคลื่อนที่แบบลอยตัว (SMMA) ค่าเฉลี่ยเคลื่อนที่แบบลอยตัวเชิงเส้น (LWMA) ค่าเฉลี่ยเคลื่อนที่โดยเฉลี่ย ระยะเวลาหนึ่ง เมื่อคำนวณค่าเฉลี่ยเคลื่อนที่ค่าเฉลี่ยหนึ่งค่าจากราคาตราสารในช่วงเวลานี้ เมื่อราคาเปลี่ยนแปลงไปค่าเฉลี่ยเคลื่อนที่จะเพิ่มขึ้นหรือลดลง มีสี่ประเภทของค่าเฉลี่ยเคลื่อนที่: Simple (เรียกอีกอย่างว่า Arithmetic), Exponential กระชับและถ่วงน้ำหนัก Moving Average อาจคำนวณได้สำหรับชุดข้อมูลลำดับใด ๆ รวมถึงราคาเปิดและราคาปิดราคาสูงสุดและต่ำสุดปริมาณการซื้อขายหรือตัวชี้วัดอื่น ๆ มักเป็นกรณีที่ใช้ค่าเฉลี่ยเคลื่อนที่สองเท่า สิ่งเดียวที่ค่าเฉลี่ยเคลื่อนที่ของแต่ละประเภทแตกต่างกันมากคือเมื่อค่าสัมประสิทธิ์น้ำหนักที่กำหนดให้กับข้อมูลล่าสุดต่างกัน ในกรณีที่เรากำลังพูดถึง Simple Moving Average ราคาทั้งหมดของช่วงเวลาที่เป็นปัญหามีมูลค่าเท่ากัน Exponential Moving Average และ Linear Weighted Moving Average ให้ความสำคัญกับราคาล่าสุด วิธีที่นิยมใช้ในการตีราคาค่าเฉลี่ยของราคาคือการเปรียบเทียบการเปลี่ยนแปลงของราคากับการดำเนินการด้านราคา เมื่อราคาของตราสารเพิ่มขึ้นเหนือค่าเฉลี่ยเคลื่อนที่สัญญาณซื้อจะปรากฏขึ้นหากราคาต่ำกว่าค่าเฉลี่ยเคลื่อนที่เรามีสัญญาณการขายอะไรบ้าง ระบบการซื้อขายนี้ซึ่งอิงตามค่าเฉลี่ยเคลื่อนที่ไม่ได้ออกแบบมาเพื่อให้เข้าสู่ตลาดได้อย่างถูกต้องในจุดต่ำสุดและทางออกด้านขวาบนยอด จะช่วยให้สามารถปฏิบัติตามแนวโน้มดังต่อไปนี้: ซื้อเร็ว ๆ นี้หลังจากที่ราคาถึงจุดต่ำสุดแล้วและจะขายได้เร็ว ๆ นี้หลังจากที่ราคาถึงจุดสูงสุดแล้ว ค่าเฉลี่ยเคลื่อนที่สามารถใช้กับตัวบ่งชี้ได้ นั่นคือที่การตีความตัวบ่งชี้ค่าเฉลี่ยเคลื่อนที่จะคล้ายกับการตีความค่าเฉลี่ยถ่วงน้ำหนักของราคา: ถ้าตัวบ่งชี้สูงขึ้นเหนือค่าเฉลี่ยเคลื่อนที่ของตัวบ่งชี้นั่นหมายความว่าการเคลื่อนไหวของตัวบ่งชี้ที่เพิ่มขึ้นมีแนวโน้มที่จะดำเนินต่อไป: ถ้าตัวบ่งชี้ต่ำกว่าค่าเฉลี่ยเคลื่อนที่ หมายความว่ามีแนวโน้มว่าจะลดลงต่อไป นี่คือประเภทของค่าเฉลี่ยเคลื่อนที่ในแผนภูมิ: ค่าเฉลี่ยเคลื่อนที่แบบเคลื่อนที่เฉลี่ย (SMA) ค่าเฉลี่ยเคลื่อนที่แบบเลื่อนลอย (EMA) Smoothed Moving Average (SMMA) ค่าเฉลี่ยเคลื่อนที่เชิงเส้นแบบเชิงเส้น (LMA) คุณสามารถทดสอบสัญญาณการค้าของตัวบ่งชี้นี้โดยการสร้าง Expert Advisor ใน MQL5 Wizard การคำนวณ Average Moving Average (Simple Average Moving Average - Simple Average Moving Average - Simple Moving Average - Average Average Moving Average - Simple Average Moving Average) หมายถึงการคำนวณค่าเฉลี่ยเคลื่อนที่ (Simple Moving Average - SMA) โดยทั่วไปหมายถึงการคำนวณค่าเฉลี่ยเคลื่อนที่คำนวณโดยสรุปราคาปิดตราสารเป็นระยะเวลาเดียว (เช่น 12 ชั่วโมง) ค่านี้หารด้วยจำนวนงวดดังกล่าว SMA SUM (CLOSE (i), N) N SUM sum CLOSE (i) ระยะเวลาปิดงวดปัจจุบัน N จำนวนรอบการคำนวณ ค่าเฉลี่ยเคลื่อนที่แบบ Exponential (EMA) ค่าเฉลี่ยเคลื่อนที่ที่ถ่วงโดยการสุ่มตัวอย่างคำนวณโดยการเพิ่มส่วนแบ่งบางส่วนของราคาปิดปัจจุบันเป็นค่าก่อนหน้าของค่าเฉลี่ยเคลื่อนที่ ด้วยราคาเฉลี่ยเคลื่อนที่ที่ราบเรียบตามลำดับขั้นตอนราคาปิดล่าสุดมีมูลค่ามากขึ้น ค่าเฉลี่ยถ่วงน้ำหนักของค่า P-percent จะมีลักษณะดังนี้ EMA (CLOSE (i) P) (EMA (i - 1) (1 - P)) ปิด (i) ค่า EMA (i - 1) ของ Moving Average ของช่วงก่อนหน้า P เปอร์เซ็นต์ของการใช้ราคา Smoothed Moving Average (SMMA) ค่าแรกของค่าเฉลี่ยเคลื่อนที่แบบเรียบนี้คำนวณเป็นค่าเฉลี่ยเคลื่อนที่แบบเรียบ (SMA): SUM1 SUM (CLOSE (i), N) ค่าเฉลี่ยเคลื่อนที่ที่สองคำนวณตามสูตรนี้: SMMA (i) (SMMA1 (N-1) CLOSE (i)) N ค่าเฉลี่ยเคลื่อนที่ที่คำนวณได้จะคำนวณตามสูตรด้านล่าง: PREVSUM SMMA (i - 1) N SMMA (i) (PREVSUM - SMMA (i - 1) CLOSE (i)) N SUM sum SUM1 ยอดรวมของราคาปิดสำหรับ N period นับจากแถบก่อนหน้า PREVSUM smoothed sum of the previous bar SMMA (i-1) smoothed moving average ของแถบก่อนหน้า SMMA (i) ปรับค่าเฉลี่ยเคลื่อนที่ของแถบปัจจุบัน (ยกเว้นงวดแรก) ปิด (i) ราคาปดปดปดปด N ปจจุบัน หลังจากการแปลงเลขคณิตแล้วสูตรนี้สามารถทำได้ง่ายขึ้น: SMMA (i) (SMMA (i - 1) (N - 1) ปิด (i)) N ค่าเฉลี่ยถ่วงน้ำหนักเชิงเส้น (LWMA) ในกรณีของค่าเฉลี่ยเคลื่อนที่ถ่วงน้ำหนักข้อมูลล่าสุดคือ มีค่ามากกว่าข้อมูลเบื้องต้น ค่าเฉลี่ยถ่วงน้ำหนักที่คำนวณได้จากการคูณด้วยราคาต่อหนึ่งอันของราคาปิดที่อยู่ในชุดการพิจารณาโดยใช้ค่าสัมประสิทธิ์น้ำหนัก: LWMA SUM (CLOSE (i) i, N) SUM (i, N) SUM sum CLOSE (i) SUM (i, N) ผลรวมของค่าสัมประสิทธิ์น้ำหนัก N ระยะเวลาการให้ราบเรียบวิธีการใช้ค่าเฉลี่ยเคลื่อนที่ในการซื้อหุ้นค่าเฉลี่ยเคลื่อนที่ (MA) เป็นเครื่องมือวิเคราะห์ทางเทคนิคที่เรียบง่ายซึ่งช่วยให้ข้อมูลราคาดีขึ้นโดยการสร้างราคาเฉลี่ยที่อัปเดตอยู่ตลอดเวลา ค่าเฉลี่ยจะถูกนำมาใช้ในช่วงเวลาหนึ่งเช่น 10 วัน 20 นาที 30 สัปดาห์หรือช่วงเวลาใด ๆ ที่ผู้ขายเลือก มีข้อได้เปรียบในการใช้ค่าเฉลี่ยเคลื่อนที่ในการซื้อขายรวมถึงตัวเลือกในประเภทค่าเฉลี่ยเคลื่อนที่ที่จะใช้ กลยุทธ์การย้ายเฉลี่ยยังเป็นที่นิยมและสามารถปรับแต่งให้เหมาะกับช่วงเวลาใด ๆ เหมาะกับนักลงทุนระยะยาวและผู้ค้าระยะสั้น ทำไมต้องใช้ค่าเฉลี่ยเคลื่อนที่ค่าเฉลี่ยเคลื่อนที่สามารถช่วยลดปริมาณเสียงในแผนภูมิราคาได้ มองไปที่ทิศทางของค่าเฉลี่ยเคลื่อนที่เพื่อดูแนวคิดพื้นฐานของราคาที่เคลื่อนไหว ราคาปรับตัวขึ้นและราคาปรับตัวลง (หรือเมื่อเร็ว ๆ นี้) โดยรวมลดลงและราคาปรับตัวลงโดยรวมเคลื่อนไปด้านข้างและราคาน่าจะอยู่ในช่วง ค่าเฉลี่ยเคลื่อนที่สามารถทำหน้าที่เป็นตัวสนับสนุนหรือความต้านทาน ในระยะขาขึ้นค่าเฉลี่ยเคลื่อนที่ 50 วัน 100 วันหรือ 200 วันอาจเป็นระดับการสนับสนุนดังที่แสดงในรูปด้านล่าง นี่เป็นเพราะการกระทำโดยเฉลี่ยเช่นพื้น (การสนับสนุน) ดังนั้นราคาจึงกลับขึ้นมา ในขาลงค่าเฉลี่ยถ่วงน้ำหนักอาจทำหน้าที่เป็นความต้านทานเช่นเพดานราคากระทบมันแล้วเริ่มที่จะลดลงอีกครั้ง ราคาเคยชินเคารพค่าเฉลี่ยเคลื่อนที่ในลักษณะนี้ ราคาอาจไหลผ่านเล็กน้อยหรือหยุดและย้อนกลับก่อนที่จะถึง เป็นแนวทางทั่วไปถ้าราคาอยู่เหนือค่าเฉลี่ยที่เคลื่อนที่แนวโน้มจะเพิ่มขึ้น หากราคาต่ำกว่าค่าเฉลี่ยเคลื่อนที่แนวโน้มจะลดลง ค่าเฉลี่ยเคลื่อนที่สามารถมีความยาวแตกต่างกันได้ (กล่าวสั้น ๆ ) ดังนั้นหนึ่งอาจบ่งบอกถึงแนวโน้มขาขึ้นขณะที่อีกค่าหนึ่งบ่งบอกถึงแนวโน้มขาลง ประเภทของค่าเฉลี่ยเคลื่อนที่ค่าเฉลี่ยเคลื่อนที่สามารถคำนวณได้หลายวิธี ค่าเฉลี่ยเคลื่อนที่ห้าวัน (SMA) เพียงแค่เพิ่มขึ้นห้าราคาปิดล่าสุดในชีวิตประจำวันและหารด้วยห้าเพื่อสร้างค่าเฉลี่ยใหม่ในแต่ละวัน แต่ละค่าเฉลี่ยจะเชื่อมต่อกันทำให้เกิดเส้นไหลเอกพจน์ ค่าเฉลี่ยเคลื่อนที่ที่นิยมอีกอย่างหนึ่งคือค่าเฉลี่ยเคลื่อนที่แบบเสวนา (EMA) การคำนวณมีความซับซ้อนมากขึ้น แต่โดยทั่วไปใช้น้ำหนักมากขึ้นกับราคาล่าสุด วางแผน SMA 50 วันและ EMA 50 วันในแผนภูมิเดียวกันและคุณจะสังเกตเห็นว่า EMA ทำปฏิกิริยากับการเปลี่ยนแปลงราคาได้เร็วกว่า SMA เนื่องจากมีการเพิ่มน้ำหนักข้อมูลราคาล่าสุด ซอฟต์แวร์การทำแผนที่และแพลตฟอร์มการซื้อขายทำคำนวณดังนั้นจึงไม่มีการใช้คณิตศาสตร์ด้วยตนเองเพื่อใช้ MA ประเภทของ MA ไม่ดีกว่าอีก EMA อาจทำงานได้ดีขึ้นในตลาดหุ้นหรือตลาดการเงินเป็นระยะ ๆ และในบางครั้ง SMA อาจทำงานได้ดีขึ้น กรอบเวลาที่เลือกสำหรับค่าเฉลี่ยเคลื่อนที่จะมีบทบาทสำคัญในประสิทธิภาพของการทำงาน (ไม่ขึ้นกับประเภท) ความยาวเฉลี่ยที่เคลื่อนที่ได้คือ 10, 20, 50, 100 และ 200 ความยาวเหล่านี้สามารถใช้กับกรอบเวลาแผนภูมิใด ๆ (หนึ่งนาทีทุกวันรายสัปดาห์ ฯลฯ ) ขึ้นอยู่กับเส้นขอบการค้าของผู้ค้า กรอบเวลาหรือความยาวที่คุณเลือกสำหรับค่าเฉลี่ยเคลื่อนที่ซึ่งเรียกอีกอย่างว่าช่วงเวลาที่มองย้อนกลับสามารถมีบทบาทอย่างมากในการที่มีประสิทธิภาพ MA ที่มีกรอบเวลาสั้น ๆ จะตอบสนองต่อการเปลี่ยนแปลงของราคาได้เร็วกว่า MA ที่มีระยะเวลาย้อนหลังนาน ในภาพด้านล่างค่าเฉลี่ยเคลื่อนที่ 20 วันจะติดตามราคาที่เกิดขึ้นจริงกว่า 100 วันอย่างใกล้ชิด 20 วันอาจเป็นประโยชน์ในการวิเคราะห์แก่ผู้ค้ารายย่อยที่สั้นกว่าเนื่องจากราคาดังกล่าวใกล้เคียงกับราคามากขึ้นและทำให้เกิดความล่าช้าน้อยกว่าค่าเฉลี่ยเคลื่อนที่ระยะยาว ความล่าช้าคือเวลาที่ใช้สำหรับค่าเฉลี่ยเคลื่อนที่ในการส่งสัญญาณการกลับรายการที่อาจเกิดขึ้น การเรียกคืนเป็นแนวทางทั่วไปเมื่อราคาอยู่เหนือค่าเฉลี่ยที่เคลื่อนที่แนวโน้มจะพิจารณาขึ้น ดังนั้นเมื่อราคาปรับตัวลดลงต่ำกว่าค่าเฉลี่ยที่เคลื่อนที่จะส่งผลให้เกิดการกลับรายการที่อาจเกิดขึ้นจาก MA ค่าเฉลี่ยเคลื่อนที่ 20 วันจะให้สัญญาณการกลับรายการมากขึ้นกว่าค่าเฉลี่ยเคลื่อนที่ 100 วัน ค่าเฉลี่ยเคลื่อนที่สามารถยาวได้ 15, 28, 89 ฯลฯ การปรับค่าเฉลี่ยเคลื่อนที่เพื่อให้ได้ข้อมูลที่ถูกต้องมากขึ้นเกี่ยวกับข้อมูลในอดีตอาจช่วยสร้างสัญญาณที่ดีขึ้นในอนาคต กลยุทธ์การซื้อขาย - Crossovers Crossovers เป็นหนึ่งในกลยุทธ์เฉลี่ยที่เคลื่อนไหวโดยเฉลี่ย ประเภทแรกคือครอสโอเวอร์ราคา เรื่องนี้ถูกกล่าวถึงก่อนหน้านี้และเมื่อราคาสูงกว่าหรือต่ำกว่าค่าเฉลี่ยเคลื่อนที่เพื่อบ่งชี้ถึงแนวโน้มการเปลี่ยนแปลงที่อาจเกิดขึ้น กลยุทธ์อีกอย่างหนึ่งก็คือการใช้ค่าเฉลี่ยเคลื่อนที่สองค่าเป็นแผนภูมิหนึ่งและยาวอีกหนึ่งอัน เมื่อ MA สั้นข้ามเหนือ MA ระยะยาวสัญญาณซื้อตามที่บ่งชี้ว่าแนวโน้มมีการขยับขึ้นซึ่งเรียกว่า Cross สีทอง เมื่อ MA สั้นลงมาต่ำกว่า MA ในระยะยาวสัญญาณการขายของมันบ่งชี้ว่าแนวโน้มมีการเคลื่อนตัวลง ค่านี้เรียกว่าเป็นค่าเฉลี่ย deaddeath ค่าเฉลี่ยเคลื่อนที่คำนวณจากข้อมูลที่ผ่านมาและไม่มีอะไรเกี่ยวกับการคำนวณในลักษณะคาดการณ์ ดังนั้นผลการคำนวณโดยใช้ค่าเฉลี่ยเคลื่อนที่สามารถสุ่มได้ - ในบางครั้งตลาดดูเหมือนว่าจะให้ความสนับสนุนสัญญาณตอบรับและสัญญาณการค้าระหว่างประเทศ และบางครั้งก็แสดงให้เห็นว่าไม่มีการเคารพ ปัญหาที่สำคัญอย่างหนึ่งก็คือถ้าการดำเนินการด้านราคากลายเป็นราคาที่ผันผวนราคาอาจแกว่งไปมาเป็นสัญญาณสัญญาณย้อนกลับหลายทิศทาง เมื่อสิ่งนี้เกิดขึ้นได้ดีที่สุดให้หลีกเลี่ยงหรือใช้ตัวบ่งชี้อื่นเพื่อช่วยชี้แจงแนวโน้ม สิ่งเดียวที่สามารถเกิดขึ้นได้กับการครอสโอเวอร์ MA ซึ่ง MAs ได้รับการพันกันเป็นระยะเวลาหนึ่งโดยเริ่มต้นธุรกิจการค้าหลายอย่าง ค่าเฉลี่ยเคลื่อนที่ทำงานได้ดีขึ้นในสภาวะที่มีแนวโน้มสูง แต่มักไม่ดีในสภาวะที่แปรปรวนหรือแตกต่างกัน การปรับกรอบเวลาสามารถช่วยในเรื่องนี้ได้ชั่วคราวแม้ว่าในบางประเด็นประเด็นเหล่านี้มักเกิดขึ้นโดยไม่คำนึงถึงกรอบเวลาที่เลือกสำหรับ MA (s) ค่าเฉลี่ยเคลื่อนที่ช่วยลดข้อมูลราคาโดยการทำให้เรียบและสร้างเส้นไหล วิธีนี้สามารถทำให้แนวโน้มในการแยกตัวง่ายขึ้น ค่าเฉลี่ยเคลื่อนที่แบบเสวนาตอบสนองต่อการเปลี่ยนแปลงของราคาได้ง่ายกว่าค่าเฉลี่ยเคลื่อนที่ที่เรียบง่าย ในบางกรณีอาจเป็นเรื่องที่ดีและในบางกรณีอาจทำให้เกิดสัญญาณผิดพลาด การเคลื่อนไหวโดยเฉลี่ยที่มีระยะเวลาย้อนกลับสั้นกว่า (เช่น 20 วัน) จะตอบสนองต่อการเปลี่ยนแปลงราคาได้เร็วกว่าค่าเฉลี่ยที่มีระยะเวลามองยาว (200 วัน) การย้ายไขว้เฉลี่ยเป็นกลยุทธ์ยอดนิยมสำหรับทั้งรายการและทางออก MAs ยังสามารถเน้นพื้นที่ของการสนับสนุนหรือความต้านทานที่อาจเกิดขึ้น แม้ว่าค่าดังกล่าวอาจมีการคาดการณ์ก็ตามค่าเฉลี่ยเคลื่อนที่จะขึ้นอยู่กับข้อมูลในอดีตเสมอและเพียงแสดงราคาเฉลี่ยในช่วงเวลาหนึ่งเท่านั้น

No comments:

Post a Comment